Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(5): e14427, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698677

RESUMO

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Assuntos
Artrópodes , Biodiversidade , Aves , Clima , Comportamento Predatório , Árvores , Animais , Artrópodes/fisiologia , Aves/fisiologia , Cadeia Alimentar , Larva/fisiologia
2.
Proc Natl Acad Sci U S A ; 121(12): e2312252121, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466845

RESUMO

The social system of animals involves a complex interplay between physiology, natural history, and the environment. Long relied upon discrete categorizations of "social" and "solitary" inhibit our capacity to understand species and their interactions with the world around them. Here, we use a globally distributed camera trapping dataset to test the drivers of aggregating into groups in a species complex (martens and relatives, family Mustelidae, Order Carnivora) assumed to be obligately solitary. We use a simple quantification, the probability of being detected in a group, that was applied across our globally derived camera trap dataset. Using a series of binomial generalized mixed-effects models applied to a dataset of 16,483 independent detections across 17 countries on four continents we test explicit hypotheses about potential drivers of group formation. We observe a wide range of probabilities of being detected in groups within the solitary model system, with the probability of aggregating in groups varying by more than an order of magnitude. We demonstrate that a species' context-dependent proclivity toward aggregating in groups is underpinned by a range of resource-related factors, primarily the distribution of resources, with increasing patchiness of resources facilitating group formation, as well as interactions between environmental conditions (resource constancy/winter severity) and physiology (energy storage capabilities). The wide variation in propensities to aggregate with conspecifics observed here highlights how continued failure to recognize complexities in the social behaviors of apparently solitary species limits our understanding not only of the individual species but also the causes and consequences of group formation.


Assuntos
Carnívoros , Comportamento Social , Animais , Carnívoros/fisiologia
3.
Nature ; 627(8004): 564-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418889

RESUMO

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Assuntos
Biodiversidade , Florestas , Mapeamento Geográfico , Árvores , Modelos Biológicos , Especificidade da Espécie , Árvores/classificação , Árvores/fisiologia , Clima Tropical
4.
Conserv Biol ; : e14221, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937455

RESUMO

Reliable maps of species distributions are fundamental for biodiversity research and conservation. The International Union for Conservation of Nature (IUCN) range maps are widely recognized as authoritative representations of species' geographic limits, yet they might not always align with actual occurrence data. In recent area of habitat (AOH) maps, areas that are not habitat have been removed from IUCN ranges to reduce commission errors, but their concordance with actual species occurrence also remains untested. We tested concordance between occurrences recorded in camera trap surveys and predicted occurrences from the IUCN and AOH maps for 510 medium- to large-bodied mammalian species in 80 camera trap sampling areas. Across all areas, cameras detected only 39% of species expected to occur based on IUCN ranges and AOH maps; 85% of the IUCN only mismatches occurred within 200 km of range edges. Only 4% of species occurrences were detected by cameras outside IUCN ranges. The probability of mismatches between cameras and the IUCN range was significantly higher for smaller-bodied mammals and habitat specialists in the Neotropics and Indomalaya and in areas with shorter canopy forests. Our findings suggest that range and AOH maps rarely underrepresent areas where species occur, but they may more often overrepresent ranges by including areas where a species may be absent, particularly at range edges. We suggest that combining range maps with data from ground-based biodiversity sensors, such as camera traps, provides a richer knowledge base for conservation mapping and planning.


Combinación de censos con fototrampas y mapas de extensión de la UICN para incrementar el conocimiento sobre la distribución de las especies Resumen Los mapas confiables de la distribución de las especies son fundamentales para la investigación y conservación de la biodiversidad. Los mapas de distribución de la Unión Internacional para la Conservación de la Naturaleza (UICN) están reconocidos como representaciones de autoridad de los límites geográficos de las especies, aunque no siempre se alinean con los datos actuales de su presencia. En los mapas recientes de área de hábitat (ADH), las áreas que no son hábitat han sido eliminadas de la distribución de la UICN para reducir los errores de comisión, pero su concordancia con la presencia actual de las especies tampoco ha sido analizada. Analizamos la concordancia entre la presencia registrada por los censos de fototrampas y pronosticamos la presencia a partir de los mapas de la UICN y de ADH de 510 especies de mamíferos de talla mediana a grande en 80 áreas de muestreo de fototrampas. Las cámaras detectaron sólo el 39% de las especies esperadas con base en la distribución de la UICN y los mapas de ADH en todas las áreas; el 85% de las disparidades con la UICN ocurrieron dentro de los 200 km a partir del borde de la distribución. Sólo el 4% de la presencia de las especies fue detectada por las cámaras ubicadas fuera de la distribución de la UICN. La probabilidad de disparidad entre las cámaras y la UICN fue significativamente mayor para los mamíferos de talla pequeña y para los especialistas de hábitat en las regiones Neotropical e Indomalaya y en áreas con doseles forestales más bajos. Nuestros hallazgos sugieren que los mapas de distribución y ADH pocas veces subrepresentan las áreas con presencia de las especies, pero con frecuencia pueden sobrerrepresentar la distribución al incluir áreas en donde las especies pueden estar ausentes, en particular los bordes de la distribución. Sugerimos que la combinación de los mapas de distribución con los sensores de biodiversidad en tierra, como las fototrampas, proporciona una base más rica de conocimiento para el mapeo y la planeación de la conservación.

5.
Conserv Biol ; : e14218, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937478

RESUMO

Multifunctional landscapes that support economic activities and conservation of biological diversity (e.g., cattle ranches with native forest) are becoming increasingly important because small remnants of native forest may comprise the only habitat left for some wildlife species. Understanding the co-occurrence between wildlife and disturbance factors, such as poaching activity and domesticated ungulates, is key to successful management of multifunctional landscapes. Tools to measure co-occurrence between wildlife and disturbance factors include camera traps and autonomous acoustic recording units. We paired 52 camera-trap stations with acoustic recorders to investigate the association between 2 measures of disturbance (poaching and cattle) and wild ungulates present in multifunctional landscapes of the Colombian Orinoquía. We used joint species distribution models to investigate species-habitat associations and species-disturbance correlations. One model was fitted using camera-trap data to detect wild ungulates and disturbance factors, and a second model was fitted after replacing camera-trap detections of disturbance factors with their corresponding acoustic detections. The direction, significance, and precision of the effect of covariates depended on the sampling method used for disturbance factors. Acoustic monitoring typically resulted in more precise estimates of the effects of covariates and of species-disturbance correlations. Association patterns between wildlife and disturbance factors were found only when disturbance was detected by acoustic recorders. Camera traps allowed us to detect nonvocalizing species, whereas audio recording devices increased detection of disturbance factors leading to more precise estimates of co-occurrence patterns. The collared peccary (Pecari tajacu), lowland tapir (Tapirus terrestris), and white-tailed deer (Odocoileus virginianus) co-occurred with disturbance factors and are conservation priorities due to the greater risk of poaching or disease transmission from cattle.


Implicaciones de la escala de detección para inferir los patrones de coocurrencia a partir de fototrampas y grabaciones emparejadas Resumen Los paisajes multifuncionales que sostienen actividades económicas y la conservación de la biodiversidad (p. ej., ganadería en bosques nativos) son cada vez más importantes porque los pequeños reductos de bosque nativo podrían comprender el único hábitat disponible para algunas especies de fauna. Es importante entender la coocurrencia entre la fauna y los factores de perturbación, como la actividad furtiva y los ungulados domésticos, para tener un manejo exitoso de los paisajes multifuncionales. Las herramientas que miden esta relación incluyen las fototrampas y las unidades autónomas de grabaciones acústicas. Emparejamos 52 estaciones de fototrampas con grabadoras acústicas para investigar la asociación entre dos medidas de perturbación (actividad furtiva y ganado) y los ungulados silvestres presentes en los paisajes multifuncionales de la Orinoquía colombiana. Usamos modelos conjuntos de distribución de especies para investigar las asociaciones especie-hábitat y las correlaciones especie-perturbación. Ajustamos un modelo con datos de fototrampeo para detectar ungulados silvestres y factores de perturbación; un segundo modelo fue ajustado después de reemplazar las detecciones por fototrampas de los factores de perturbación con las detecciones acústicas correspondientes. La dirección, importancia y precisión del efecto de las covarianzas dependió del método de muestreo usado para los factores de perturbación. El monitoreo acústico casi siempre resultó en estimaciones más precisas de los efectos de las covarianzas y de las correlaciones especie-perturbación. Los patrones de asociación entre la fauna y los factores de perturbación sólo se presentaron cuando las grabadoras acústicas detectaron la perturbación. Las fototrampas nos permitieron detectar especies que no vocalizan, mientras que las grabaciones de audio incrementaron la detección de factores de perturbación, lo que resultó en estimados más precisos de los patrones de coocurrencia. El pecarí de collar (Pecari tajacu), el tapir (Tapirus terrestris) y el venado cola blanca (Odocoileus virginianus) tuvieron coocurrencia con los factores de perturbación y tienen prioridad de conservación debido al mayor riesgo de caza furtiva o transmisión de enfermedades del ganado.

6.
Commun Biol ; 6(1): 1066, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857800

RESUMO

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.


Assuntos
Micorrizas , Retroalimentação , Simbiose , Plantas/microbiologia , Solo
7.
Proc Biol Sci ; 290(2001): 20230742, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37339746

RESUMO

Classic ecological theory has proven that temperature, precipitation and productivity organize ecosystems at broad scales and are generalized drivers of biodiversity within different biomes. At local scales, the strength of these predictors is not consistent across different biomes. To better translate these theories to localized scales, it is essential to determine the links between drivers of biodiversity. Here we harmonize existing ecological theories to increase the predictive power for species richness and functional diversity. We test the relative importance of three-dimensional habitat structure as a link between local and broad-scale patterns of avian richness and functional diversity. Our results indicate that habitat structure is more important than precipitation, temperature and elevation gradients for predicting avian species richness and functional diversity across different forest ecosystems in North America. We conclude that forest structure, influenced by climatic drivers, is essential for predicting the response of biodiversity with future shifts in climatic regimes.


Assuntos
Ecossistema , Florestas , Animais , Biodiversidade , Temperatura , Aves/fisiologia
8.
Ecol Appl ; 33(5): e2857, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084010

RESUMO

As a leading cause of forest health degradation, non-native invasive plant species are a key focus for many forest management and conservation efforts. These efforts come at a high price for resource-limited agencies and organizations making cost-effectiveness an important objective of invasion response plans. In this paper, we present an approach to guide the prioritization of locations for invasion management using species distribution models that account for the non-equilibrium of invasive species distributions and use readily available land use data as the primary explanatory variables. This approach takes advantage of the relatively high spatial resolution, as well as the broad, continuous geographic coverage, of land use data to provide results at a landscape scale relevant to practitioners responsible for invasive species management. In our example from northern Virginia, we simultaneously modeled a suite of invasive plant species to identify common indicators of invasion. We found that the proportions of surrounding non-forested land use types (grasses, crops, and development) were the most common and strongest indicators of invasion risk. These outcomes can guide managers of large protected areas to focus on major divides between forest and non-forest land over linear disturbances. We also found useful species-specific traits that can inform specific management actions. Additionally, we demonstrate through a case study how organizations that manage multiple smaller properties can take advantage of the projected distribution maps when considering acquiring or administering properties.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Florestas , Espécies Introduzidas , Produtos Agrícolas
9.
Animals (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36899702

RESUMO

Large mammals can perceive humans as predators and therefore adjust their behavior to achieve coexistence with humans. However, lack of research at sites with low hunting intensity limits our understanding of how behavioral responses of animals adapt to different predation risks by humans. At Heshun County in North China, where hunting has been banned for over three decades and only low-intensity poaching exists, we exposed two large ungulates (Siberian roe deer Capreolus pygarus and wild boar Sus scrofa) to the sounds of humans, an extant predator (leopard Panthera pardus) and a control (wind), and examined their flight responses and detection probabilities when hearing different type of sounds. Both species showed higher flight probabilities when hearing human vocalization than wind, and wild boar were even more likely to flee upon hearing human vocalization than leopard roar, suggesting the behavioral response to humans can equal or exceed that of large carnivores in these two ungulates even in an area without hunting practices. Recorded sounds had no effect on detection probability of both ungulates. Additionally, with repeated exposure to sounds, regardless of treatment, roe deer were less likely to flee and wild boars were more likely to be detected, indicating a habituation-type response to sound stimuli. We speculate that the immediate flight behavior rather than shifts in habitat use of the two species reflect the low hunting/poaching pressure at our study site and suggest further examination of physiological status and demographic dynamics of the study species to understand human influence on their long-term persistence.

10.
Ecol Appl ; 33(2): e2790, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36482050

RESUMO

Free-roaming cats are a conservation concern in many areas but identifying their impacts and developing mitigation strategies requires a robust understanding of their distribution and density patterns. Urban and residential areas may be especially relevant in this process because free-roaming cats are abundant in these anthropogenic landscapes. Here, we estimate the occupancy and density of free-roaming cats in Washington D.C. and relate these metrics to known landscape and social factors. We conducted an extended camera trap survey of public and private spaces across D.C. and analyzed data collected from 1483 camera deployments from 2018 to 2020. We estimated citywide cat distribution by fitting hierarchical occupancy models and further estimated cat abundance using a novel random thinning spatial capture-recapture model that allows for the use of photos that can and cannot be identified to individual. Within this model, we utilized individual covariates that provided identity exclusions between photos of unidentifiable cats with inconsistent coat patterns, thus increasing the precision of abundance estimates. This combined model also allowed for unbiased estimation of density when animals cannot be identified to individual at the same rate as for free-roaming cats whose identifiability depended on their coat characteristics. Cat occupancy and abundance declined with increasing distance from residential areas, an effect that was more pronounced in wealthier neighborhoods. There was noteworthy absence of cats detected in larger public spaces and forests. Realized densities ranged from 0.02 to 1.75 cats/ha in sampled areas, resulting in a district-wide estimate of ~7296 free-roaming cats. Ninety percent of cat detections lacked collars and nearly 35% of known individuals were ear-tipped, indicative of district Trap-Neuter-Return (TNR) programs. These results suggest that we mainly sampled and estimated the unowned cat subpopulation, such that indoor/outdoor housecats were not well represented. The precise estimation of cat population densities is difficult due to the varied behavior of subpopulations within free-roaming cat populations (housecats, stray and feral cats), but our methods provide a first step in establishing citywide baselines to inform data-driven management plans for free-roaming cats in urban environments.


Assuntos
Animais Selvagens , Controle da População , Animais , Gatos , Controle da População/métodos , Inquéritos e Questionários , Densidade Demográfica , Meio Ambiente
11.
Nature ; 608(7923): 552-557, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948636

RESUMO

As the climate changes, warmer spring temperatures are causing earlier leaf-out1-3 and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a tendency towards increased growing season length3 and annual CO2 uptake1,3-7. However, less is known about how spring temperatures affect tree stem growth8,9, which sequesters carbon in wood that has a long residence time in the ecosystem10,11. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO2 uptake in years with warmer spring temperatures4,5 does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models1,12, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO2 sink of temperate deciduous forests.


Assuntos
Aquecimento Global , Estações do Ano , Temperatura , Árvores , Aclimatação , Biomassa , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Modelos Climáticos , Florestas , Aquecimento Global/estatística & dados numéricos , América do Norte , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Fatores de Tempo , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Madeira/crescimento & desenvolvimento , Madeira/metabolismo
12.
Sci Data ; 9(1): 267, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35660766

RESUMO

We have more data about wildlife trafficking than ever before, but it remains underutilized for decision-making. Central to effective wildlife trafficking interventions is collection, aggregation, and analysis of data across a range of source, transit, and destination geographies. Many data are geospatial, but these data cannot be effectively accessed or aggregated without appropriate geospatial data standards. Our goal was to create geospatial data standards to help advance efforts to combat wildlife trafficking. We achieved our goal using voluntary, participatory, and engagement-based workshops with diverse and multisectoral stakeholders, online portals, and electronic communication with more than 100 participants on three continents. The standards support data-to-decision efforts in the field, for example indictments of key figures within wildlife trafficking, and disruption of their networks. Geospatial data standards help enable broader utilization of wildlife trafficking data across disciplines and sectors, accelerate aggregation and analysis of data across space and time, advance evidence-based decision making, and reduce wildlife trafficking.

13.
New Phytol ; 234(5): 1664-1677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35201608

RESUMO

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.


Assuntos
Carbono , Clima Tropical , Biomassa , Temperatura , Madeira
14.
Glob Chang Biol ; 28(9): 2895-2909, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35080088

RESUMO

The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.


Assuntos
Mudança Climática , Clima Tropical , Biomassa , Demografia , Ecossistema
15.
Nat Ecol Evol ; 5(7): 965-973, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33941904

RESUMO

Ecology cannot yet fully explain why so many tree species coexist in natural communities such as tropical forests. A major difficulty is linking individual-level processes to community dynamics. We propose a combination of tree spatial data, spatial statistics and dynamical theory to reveal the relationship between spatial patterns and population-level interaction coefficients and their consequences for multispecies dynamics and coexistence. Here we show that the emerging population-level interaction coefficients have, for a broad range of circumstances, a simpler structure than their individual-level counterparts, which allows for an analytical treatment of equilibrium and stability conditions. Mechanisms such as animal seed dispersal, which result in clustering of recruits that is decoupled from parent locations, lead to a rare-species advantage and coexistence of otherwise neutral competitors. Linking spatial statistics with theories of community dynamics offers new avenues for explaining species coexistence and calls for rethinking community ecology through a spatial lens.


Assuntos
Ecologia , Florestas , Animais , Análise por Conglomerados , Plantas , Árvores
16.
Glob Chang Biol ; 27(16): 3718-3731, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33887083

RESUMO

Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human-dominated landscapes such that only species with "winning" combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems. We compiled detection data for 24 mammal species from 61 populations across North America to quantify the effects of (1) the direct presence of people and (2) the human footprint (landscape modification) on mammal occurrence and activity levels. Thirty-three percent of mammal species exhibited a net negative response (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across populations, whereas 58% of species were positively associated with increasing disturbance. However, apparent benefits of human presence and footprint tended to decrease or disappear at higher disturbance levels, indicative of thresholds in mammal species' capacity to tolerate disturbance or exploit human-dominated landscapes. Species ecological and life history traits were strong predictors of their responses to human footprint, with increasing footprint favoring smaller, less carnivorous, faster-reproducing species. The positive and negative effects of human presence were distributed more randomly with respect to species trait values, with apparent winners and losers across a range of body sizes and dietary guilds. Differential responses by some species to human presence and human footprint highlight the importance of considering these two forms of human disturbance separately when estimating anthropogenic impacts on wildlife. Our approach provides insights into the complex mechanisms through which human activities shape mammal communities globally, revealing the drivers of the loss of larger predators in human-modified landscapes.


Assuntos
Animais Selvagens , Características de História de Vida , Animais , Ecossistema , Atividades Humanas , Humanos , Mamíferos , América do Norte
17.
Sci Total Environ ; 777: 145995, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33676225

RESUMO

Globally, the number and extent of terrestrial protected areas (PAs) are expanding rapidly. Nonetheless, their impacts on preventing forest loss and the factors influencing the impacts are not well understood, despite the critical roles of forests in biodiversity conservation, provision of ecosystem services, and achievement of the United Nations' Sustainable Development Goals. To address this important knowledge gap, we quantified the impacts of 54,792 PAs worldwide on preventing forest loss from 2000 to 2015, and assessed important landscape and management factors affecting the impacts of PAs. Although the majority (71.4%) of the PAs contributed to preventing forest loss, only 30.5% of forest loss in the PAs have been prevented. PAs with higher rates of forest loss in their surrounding regions, located at lower elevations, within a few hours of travel from the nearest city, with higher agricultural productivity, and permission for fewer human uses were better able to prevent forest loss. Impacts on preventing forest loss were similar regardless of whether the PAs were privately or publicly owned. Our findings highlight the potential benefits of strict protections, involving private entities in the establishment of PAs, and situating PAs in areas exposed to high risks of forest loss to enhance the capacity to combat global forest loss.

18.
New Phytol ; 231(2): 601-616, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33049084

RESUMO

As climate change drives increased drought in many forested regions, mechanistic understanding of the factors conferring drought tolerance in trees is increasingly important. The dendrochronological record provides a window through which we can understand how tree size and traits shape growth responses to droughts. We analyzed tree-ring records for 12 species in a broadleaf deciduous forest in Virginia (USA) to test hypotheses for how tree height, microenvironment characteristics, and species' traits shaped drought responses across the three strongest regional droughts over a 60-yr period. Drought tolerance (resistance, recovery, and resilience) decreased with tree height, which was strongly correlated with exposure to higher solar radiation and evaporative demand. The potentially greater rooting volume of larger trees did not confer a resistance advantage, but marginally increased recovery and resilience, in sites with low topographic wetness index. Drought tolerance was greater among species whose leaves lost turgor (wilted) at more negative water potentials and experienced less shrinkage upon desiccation. The tree-ring record reveals that tree height and leaf drought tolerance traits influenced growth responses during and after significant droughts in the meteorological record. As climate change-induced droughts intensify, tall trees with drought-sensitive leaves will be most vulnerable to immediate and longer-term growth reductions.


Assuntos
Secas , Árvores , Mudança Climática , Florestas , Folhas de Planta
19.
Nat Ecol Evol ; 4(10): 1327-1331, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747773

RESUMO

As both a flagship and umbrella species, the giant panda (Ailuropoda melanoleuca) is one of the most heavily invested species in conservation. Here, we report the wide distribution range retreat of the leopard (Panthera pardus, 81% loss), snow leopard (P. uncia, 38%), wolf (Canis lupus, 77%) and dhole (Cuon alpinus, 95%) from protected areas in the giant panda distribution range since the 1960s. The present findings indicate the insufficiency of giant panda conservation for protecting these large carnivore species and suggest that future conservation efforts should target restoring ecosystems with high trophic complexity to facilitate the recovery of large carnivore populations.


Assuntos
Carnívoros , Ursidae , Animais , Ecossistema
20.
Sci Total Environ ; 740: 140031, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32559536

RESUMO

In the Fall of 2016 a workshop was held which brought together over 50 scientists from the ecological and radiological fields to discuss feasibility and challenges of reintegrating ecosystem science into radioecology. There is a growing desire to incorporate attributes of ecosystem science into radiological risk assessment and radioecological research more generally, fueled by recent advances in quantification of emergent ecosystem attributes and the desire to accurately reflect impacts of radiological stressors upon ecosystem function. This paper is a synthesis of the discussions and consensus of the workshop participant's responses to three primary questions, which were: 1) How can ecosystem science support radiological risk assessment? 2) What ecosystem level endpoints potentially could be used for radiological risk assessment? and 3) What inference strategies and associated methods would be most appropriate to assess the effects of radionuclides on ecosystem structure and function? The consensus of the participants was that ecosystem science can and should support radiological risk assessment through the incorporation of quantitative metrics that reflect ecosystem functions which are sensitive to radiological contaminants. The participants also agreed that many such endpoints exit or are thought to exit and while many are used in ecological risk assessment currently, additional data need to be collected that link the causal mechanisms of radiological exposure to these endpoints. Finally, the participants agreed that radiological risk assessments must be designed and informed by rigorous statistical frameworks capable of revealing the causal inference tying radiological exposure to the endpoints selected for measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA